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Abstract

A computational method is developed involving the simultaneous integration of the Navier–Stokes and structural

equations for the purpose of studying the stability of concentric annular passages conducting incompressible laminar flows.

It is assumed that one side of the annulus, i.e. the centre-body, is fixed and the outer cylindrical duct is flexibly supported.

The outer cylinder is displaced from its equilibrium position and is then released. In this situation, the fluid part of the

problem is solved by an accurate method using a three-point backward implicit scheme, followed by a pseudo-time

iteration using an artificial compressibility factor. The fluid equations are discretized in space based on a finite-difference

formulation and primitive variables, for which stretched staggered grids are used. The resulting equations are cast in delta

form and are solved using an ADI scheme. The fluid forces acting on the vibrating cylinder are calculated from the

integration of the unsteady pressure and shear stresses resulting from the unsteady primitive variables calculated. The

equations of motion of the structure, subjected to the calculated fluid forces are solved using the Runge–Kutta scheme to

obtain the displacement of the moving cylinder. The problem is solved: (a) for small-amplitude motions, by means of the

so-called mean position (MP) analysis and (b) for large amplitude oscillations of the outer cylinder for which a time-

dependent coordinate transformation (TDCT) is used to fix the computational domain. Both these approaches (MP and

TDCT) are applied to uniform and non-uniform (backstep-shaped) annuli for translational motion of the cylinder. The

problem is also solved for (i) rocking motion and uniform annuli and (ii) translational motion for diffuser-shaped annuli,

with only MP analysis. When the MP analysis is considered, it is shown that, for translational motion of the outer cylinder,

the most stable configuration is that of a uniform geometry and the least stable one is the backward step geometry. For

rocking motion in uniform annular geometry, for some system parameters and high enough flow velocity, the outer

cylinder can develop flutter (limit-cycle oscillation). The comparison between the results of MP and TDCT analyses for

uniform and backstep geometries for translational motion of the cylinder indicates that the outer cylinder is less stable

when TDCT is used and the coupled frequency of oscillation is also changed considerably.
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1. Introduction

There are many engineering systems involving subsystems in which flexible structures are subjected to
annular flow. Examples are control rods in guide tubes, fuel strings in coolant channels, and feedwater
spargers, in various types of nuclear reactors [1]; certain types of jet pumps, pistons and valves; thermal shields
in nuclear reactors and heat shields in aircraft engines; oil and gas production systems; fiber spinning and wire
coating manufacture. A fuller list is given in Ref. [2, Chapter 11]. Such systems are notoriously susceptible to
fluid-elastic instabilities and vibration problems, especially when the flow passage is narrow (often referred to
as a leakage flow-induced vibration). In Ref. [1], ten practical cases of annular flow-induced-problems are
discussed, resulting in damage through wear and outright fracture, and some more in Ref. [2]; refer also to
Refs. [3–5]. This explains the interest in the study of motion-induced fluid loading on structures in annular
geometries, and on the resultant self-excited motions.

Some work on stability of flexible cylinders in axisymmetrically confined flow was undertaken by Paı̈doussis
et al. [6,7]. Since then, the research effort on this topic, specially applicable to narrow annuli has intensified
and a number of interesting papers on the subject may be found in the proceedings of various symposia in this
area; see, e.g., Paı̈doussis and Au-Yang [8,9] and Paı̈doussis et al. [10]. The first attempts to generate an
analytical viscous model for the annular geometry are due to Hobson [11] and Spurr and Hobson [12]. For the
sake of simplicity, Hobson considered a rigid cylindrical body, hinged at one point and coaxially positioned in
a flow-carrying duct, generally of non-uniform cross-sectional area; he showed that, at sufficiently high flow
velocities, oscillatory instability can occur, via a negative damping mechanism. Moreover, the model was
capable of dealing, in an approximate manner involving some degree of empiricism, with configurations
involving sudden constriction or enlargement in the flow passage. The analysis was extended to predict the
dynamical behaviour of an actual fuel assembly oscillating in a channel of arbitrary shape [13]. Measurements
of damping forces caused by flow between two concentric cylinders were made by Hobson [14] in which he
compared the experimental results with theory by making simple quasi-steady assumptions about the
frictional forces acting on the cylinder. It was shown that damping of cylindrical structures due to annular
flow arises from inlet or outlet effects and from frictional effects in the annulus, both effects increasing with
flow velocity. Also, he found that the damping forces and pressure distribution along the annulus can be well
predicted if simple assumptions about the unsteady flow in the annulus are made.

Several approaches have been used by different researchers to conduct theoretical or experimental studies
on fluid–structure interactions in very narrow annuli, or on the so-called leakage flows. Among them is the
study of Ashurts and Durst [15] on flow-induced vibrations associated with shear-layer-induced flow
oscillation in a symmetric, two-dimensional (2-D), plane test-section with a sudden expansion. Parkin and
Watson [16] described a physical model for explaining the flow-induced vibration observed in 61 and 301
annular diffusers, where the centre-body forming the diffuser can move radially. Their model is based on
experimental evidence and accounts for both fluid behaviour and structural response. Spurr and Hobson [12]
conducted some experiments in which they measured the unsteady forces caused by the flow down an annulus
formed between a fixed outer cylinder and a vibrating centre-body and compared the results with those
predicted using a linear small perturbation analysis. It was found that the forces are particularly sensitive to
the amount of pressure recovery which takes place when the annulus is terminated by an annular diffuser.
They also found that high pressure recovery leads to forces on the centre-body which are in phase with its
velocity and therefore likely to lead to coupled fluid–structure self-excited vibrations.

Mulcahy [17] obtained closed form solutions for the flow-induced damping (velocity-dependent) and
stiffness (displacement-dependent) forces acting on the vibrating walls of a one-dimensional (1-D) leakage-
flow channel. His final conclusion was that the minimum conditions necessary for dynamic and static
(divergence) instabilities are (i) a pressure loss at the upstream end of the annulus and (ii) a divergent channel
with a finite-length throat region.

Hobson and Jedwab [18] studied the effect of eccentricity on the unsteady forces on the centre-body of an
annular diffuser. They found that periodic instability can be initiated by increasing the forced vibration
amplitude above a frequency-dependent threshold.

Inada and Hayama [19] theoretically and experimentally analyzed the viscous fluid-dynamic forces and the
moments acting on the walls of a 1-D, narrow, tapered passage when one wall is vibrating in pure translation
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or rotation, or in coupled motion involving both translational and rotational modes. The fluid dynamic mass,
damping and stiffness matrices are determined, with the help of which the mechanism of instability generated
by the flow through the narrow passage is examined.

A more rigorous, purely analytical potential-flow model was formulated by Mateescu and Paı̈doussis [20],
once again for a rigid centre-body, hinged at one point and coaxially positioned in a flow-carrying conduit. In
this inviscid analysis, it was found that there is a critical location of the hinge: if the hinge is situated
downstream of that location, then the system may lose stability at sufficiently high flow velocity when the
negative fluid-dynamic damping, associated with the motions of the centre-body, overcomes the mechanical
damping. It was also found that a divergent flow passage (diffuser) destabilizes the system, whereas a
convergent one stabilizes it, which agrees with Hobson’s findings.

This rigid-body model was then extended to approximately take into account viscous effects [21]. The
principal finding of this work was that viscous effects stabilize the system, and that they become more
important as the annulus becomes narrower. In that analysis, an approximate solution of the Navier–Stokes
(N–S) equations was obtained. Subsequently, the fluid-dynamic pressures acting on the centre-body in rocking
motion were measured and compared with the theoretical ones [22].

In another investigation in which a flexible, as opposed to flexibly mounted, structure was used, the
dynamical behaviour of the system of a cylindrical beam with fixed ends subjected to axial flow in a narrow
annulus was studied [23]. It was found that, as the annular gap becomes narrower, the system loses stability by
divergence at smaller flow velocities, provided the gap size is such that inviscid fluid effects are dominant. For
very narrow annuli, however, where viscous forces dominate, this trend is reversed, and further narrowing of
the gap has a stabilizing effect on the system.

Further development in this area has been achieved by the use of computational models which involve
simultaneous numerical integration of the N–S equations for laminar flow, and the equation of motion of the
structure [24]. To this end, a forced vibration of the outer (or inner) cylinder in an annular configuration was
considered by Mateescu et al. [25,26], in which the simplified N–S equations were linearized and solved in the
annulus and the forces on the walls calculated. An extensive discussion of all previous work in this area may be
found in Ref. [2].

The present work has generalized the earlier work by Mateescu et al. (i) by taking more fully into account
the nonlinearities in the N–S equations, i.e., considering explicitly the coupling terms on the right-hand sides
of the equations and (ii) by extending it to deal with non-uniform annular geometries. To carry out these aims,
the N–S equations should be transformed in time (if large amplitude oscillation is considered) and in space;
i.e., the physical domain of integration should be transformed into a computational domain, for both the
uniform and non-uniform annular geometries. When small amplitude oscillation is considered, which is the
case in the first part of the present analysis, transformation of the equations in time is not necessary. In the
second part, the time-dependent coordinate transformation (TDCT) for larger amplitude oscillations is taken
into consideration.

The final goal in this work is the stability analysis of the system, described in Sections 2 and 3. The stability
of the structure depends most importantly on the fluid-dynamic damping, although the fluid changes the
characteristics of the structure in other ways, e.g., by increasing the effective mass of the system or affecting
the effective stiffness of the structure.

The purpose of this work is to integrate simultaneously the N–S and the structural equations and obtain the
stability (or instability) criteria for motion of the outer cylinder in a concentric geometry, with either a uniform
or a non-uniform annular passage (with a backstep or a diffuser shaped centre-body). The flow is assumed to
be laminar; hence, the Reynolds number based on the hydraulic diameter should be less than 3000. The model
is fundamentally 3-D, although some 2-D results are also presented. Finally, although the formulation is
nonlinear, the stability analysis is linear.

2. Mean position analysis (small amplitude oscillation)

The annular configuration considered consists of a centre-body concentrically located in a cylindrical
conduit as shown in Fig. 1. For an axially uniform configuration, the radius of the inner cylinder is hri and the
annular space between the two cylinders is h; thus the radius of the outer cylinder is hro ¼ hri+h, as shown in
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Fig. 1. Geometrical representation of the annular passages under consideration: (a) uniform annular flow, (b) non-uniform annular flow

with backstep, (c) non-uniform annular flow with diffuser section. The central portion of the outer cylinder, l* ¼ hl, executes transverse

translational oscillation in the longitudinal plane y ¼ 0.
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Fig. 2. Schematic representation of the geometry of the outer cylinder during rocking motion, used for boundary velocity calculation.
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Fig. 1(a). The centre-body is immersed in either quiescent fluid or a steady laminar flow. It is generally the
outer cylinder, which is forced to execute oscillatory motion, while the inner cylinder is fixed. The total length
of the outer cylinder is divided into three parts. The upstream and downstream parts of variable length
lo* ¼ hlo are kept stationary. The central portion of the cylinder, l* ¼ hl, executes oscillatory motions (either
translational as in Fig. 1 or rocking around a fixed hinge as shown in Fig. 2). The radii of hri and hro as well as
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the lengths of the fixed upstream and downstream portions and oscillating cylinder are variable. The annular
widths downstream of the backstep or diffuser section are assumed to be appropriately larger than the
corresponding upstream section (Figs. 1(b) and (c)); moreover, the angle a of the diffuser section (Fig. 1(c)) is
variable. Different values can be used for the flow velocity U, including U ¼ 0, the amplitude of oscillation e
(refer to Eq. (13)), and the frequency of oscillation f of the central part of the outer cylinder.

The translational and rocking motions of the outer cylinder take place in a given plane of symmetry. The
oscillating part of the outer cylinder is rigid but flexibly supported, by a spring with effective stiffness K and a
dashpot with damping coefficient C, not shown in the figures. For the purpose of evaluating the effect of fluid
damping on the structure, the structural damping C is neglected.

For all systems under consideration it is assumed that the outer cylinder is displaced by a distance he(t) and
then released. Due to the oscillation of the outer cylinder, fluid forces are generated which interact with the
structure; the final result of this fluid–structure interaction is the dynamical behaviour of the cylinder (e.g.,
whether it remains stable or becomes unstable), which is the main topic of this work. Before this goal is
reached, the fluid forces should be determined by solving the unsteady N–S equations in non-dimensional
form (which is applicable to incompressible fluid flow in the laminar regime) in the annular region. In the
geometry considered, because of the existence of the rigid immobile segments upstream and downstream of the
oscillating segment of the system, no end conditions need explicitly be taken into account in the formulation.
Local discontinuities between the moving and immobile segments are taken care of by the numerical scheme;
for more explanation refer to Ref. [27].
2.1. Solution of the flow field

In this analysis, the viscosity and density are assumed to remain constant. Thus, the continuity and N–S
equations, without body forces, are expressed in dimensional form as

r� � V� ¼ 0;
qV�

qt�
þ r� � ðV�V�Þ ¼ �

1

r�
r�p� þ n�r�2V�, (1,2)

respectively, where V* is the velocity vector, t* the time, r* the density, n* the kinematic viscosity, and p* the
pressure, where the asterisk denotes a dimensional quantity.1 In order to generalize the present problem, it is
convenient to define the following non-dimensional parameters:

x ¼ x�=h; r ¼ r�=h; t ¼ t�U=h; o ¼ o�h=U ,

u ¼ u�=U ; v ¼ v�=U ; w ¼ w�=U ; V ¼ V�=U ,

p ¼ ðp� � p�1Þ=ðr
�U2Þ; Re ¼ hU=n� ¼ 1

2
ReDh

; l ¼ l�=h,

where U is the reference velocity and ReDh
the Reynolds number based on the hydraulic diameter of the

annulus. Using these parameters, one can write Eqs. (1) and (2) as

r � V ¼ 0;
qV
qt
þ r � ðVVÞ ¼ �rpþ

1

Re
r2V (3,4)

and, in compact form, Eq. (4) is re-written as

qV
qt
þGðV; pÞ ¼ 0, (5)

where V ¼ [u, v, w]T and G(V, p) ¼ [Gu(u, v, w, p), Gv(u, v, w, p), Gw(u, v, w, p)]T. The continuity equation and,
as an example, the Gu component of G(V, p) in cylindrical coordinates are given by

r � V ¼
qu

qx
þ

qv

qr
þ

1

r

qw

qy
¼ 0, (6)
1The length (h) and velocity (U) scales, however, which will disappear after non-dimensionalization are given without an asterisk.
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Guðu; v;w; pÞ ¼
qðuuÞ

qx
þ

1

r

qðrvuÞ

qr
þ

1

r

qðwuÞ

qy
þ

qp

qx
�

1

Re

q2u

qx2
þ

1

r

q
qr

r
qu

qr

� �
þ

1

r2
q2u

qy2

� �
. (7)

The numerical solution of Eqs. (5) and (6) is obtained by using a three-point backward implicit scheme for
the real-time discretization and central differencing based on a stretched staggered grid in spatial discretization
as

3Vnþ1 � 4Vn þ Vn�1

2Dt
þGnþ1

¼ 0, (8)

where Dt is the real time step and Gn+1
¼ G(Vn+1, pn+1). This equation can be expressed together with Eq. (6)

as

Vnþ1 þ bGnþ1
¼ En; r � Vnþ1 ¼ 0, (9,10)

where b ¼ 2
3
Dt; En ¼ 1

3
ð4Vn � Vn�1Þ.

In a forced-vibration unsteady flow problem, the known velocity Vnþ1
b of a moving boundary is imposed as

a boundary condition. Since small-amplitude oscillation is considered here, the boundary conditions are
imposed at the mean position of the outer cylinder, Fig. 3(a). Therefore, the boundary conditions associated
with the geometries of Fig. 1 are given on the fixed inner cylinder r ¼ ri as

vwðri; y; tÞ ¼ 0; wwðri; y; tÞ ¼ 0 (11)

due to the no-slip condition, and on the moving outer cylinder ro ¼ ri+1 as

vwðro; y; tÞ ¼ ½dewðtÞ=dt� cos y; wwðro; y; tÞ ¼ �½dewðtÞ=dt� sin y, (12)

ewðtÞ ¼ �� cos ot (13)

with e as the non-dimensional amplitude and o is the circular frequency of the oscillation. The spatial
discretization uses central differencing based on a stretched staggered grid; hence, there is no need for the
pressure to be defined at the fixed or moving boundaries.

The solution of Eqs. (9) and (10) is obtained by using an iterative pseudo-time [28] relaxation method with
artificial compressibility [29], via which the equations are replaced by

qV̂
qt
þ V̂þ bĜ ¼ En; d

qp̂

qt

� �
þ r � V̂ ¼ 0, (14,15)

where t is the pseudo-time which is distinguishable from real time t, and d is the artificial compressibility

coefficient; V̂ðtÞ and p̂ðtÞ denote the pseudo-time values of the velocity and pressure between real-time levels tn

and tn+1.
U

U

Outer cylinder

cylinderInner positionTrue

Mean position

LC

1O

2O

iR

(t)

oR  
r

wvww

)(tε

(a) (b)

Fig. 3. (a) Schematic diagram indicating the mean and true maximum and minimum positions of the outer cylinder during oscillations. (b)

Cross-sectional view of the annular space during oscillation (exaggerated amplitude). The boundary conditions are applied either at the

mean position or on the moving boundary.
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An implicit Euler scheme is used to semi-discretize in pseudo-time equations (14) and (15) in the form

V̂
nþ1
� V̂

n

Dt
þ V̂

nþ1
þ bĜ

nþ1
¼ En, (16)

p̂nþ1
� p̂n

Dt
þ

1

d
r � V̂

nþ1
¼ 0, (17)

with the initial values V̂
1
¼ Vn and p̂1

¼ pn. After the solution has converged, Vnþ1 ¼ V̂
kþ1

and pnþ1 ¼ p̂kþ1,
where k is the number of iterations for convergence.

Introducing DV ¼ V̂
nþ1
� V̂

n
and similarly for DG and Dp, Eqs. (16) and (17) can be recast in delta form

ð1þ DtÞDVþ bDtDG ¼ DtðEn � V̂
n
� bĜ

n
Þ, (18)

Dpþ
Dt
d
r � ðDVÞ ¼ �

Dt
d
r � V̂

n
, (19)

where DV ¼ [Du, Dv, Dw]T and DG(V, p) ¼ [DGu, DGv, DGw]
T with, for example, DGu in cylindrical coordinates

given by

DGu ¼
qðûnDuÞ

qx
þ

1

r

qðrv̂nDuÞ

qr
þ

1

r

qðŵnDuÞ

qy
þ

qðDpÞ

qx
�

1

Re

q2ðDuÞ

qx2
þ

1

r

q
qr

r
qðDuÞ

qr

� �
þ

1

r2
q2ðDuÞ

qy2

� �
, (20)

which is first-order accurate, consistent with the order of accuracy of the Euler pseudo-time semi-discretization
discussed previously.

Eqs. (18) and (19) constitute an implicit system of equations, nonlinearly coupled by the term DG and are
written in global matrix form as

½Iþ bDtðMx þMr þMyÞ�Df ¼ DtS, (21)

in which I represents the unit matrix, the matrices Mx, Mr and My contain the spatial derivatives with respect
to x, r and y of the variable Df ¼ [Du, Dv, Dw, Dp]T. The vector S is given by

S ¼
En � V̂

n
� bĜ

n

�ð1=dÞr � V̂
n

" #
. (22)

Now, an approximate factorization [30] is applied to Eq. (21), thereby rewriting the implicit left-hand side as

½Iþ bDtðMx þMr þMyÞ�Df ¼ ðIþ bDtDxÞðIþ bDtDrÞðIþ bDtDyÞDf ¼ DtS, (23)

where Df ¼ [Du, Dv, Dw, Dp]T. The nonlinear term in Eq. (18) appears as DG. This term is linearized by simply
lagging the velocity component.

An alternating direction implicit (ADI) scheme [31] is used in this analysis in order to separate the numerical
integration of the linear system of Eq. (23). This is done by introducing the intermediate variables
Df̄ ¼ ½Dū;Dv̄;Dw̄;Dp̄�Tand D~f ¼ ½D ~u;D~v;D ~w;D ~p�T, thereby leading to

ðIþ bDtMxÞD~f ¼ DtS, (24)

ðIþ bDtMrÞDf̄ ¼ D~f, (25)

ðIþ bDtMyÞDf ¼ Df̄. (26)

Thus, for each variable (Du, Dv, Dw) and for each direction (x, r, y) the solution reduces to tridiagonal

systems of equations. Since central differences are used to discretize the spatial differential operators, only the
resulting tridiagonal systems of equations need to be solved, which is computationally efficient. In three-
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dimensional (3-D) flow fields the matrix Mr, for example, is

Mr ¼

M 0 0 0

0 Mþ 1=bþ 1=ðRe r2Þ � �wn=r q=qr

0 0 Mþ �vn
�

rþ 1
�
ðRer2Þ 0

0 ð1=bdÞðq=qrÞðrÞ 0 0

2
66664

3
77775, (27)

where

Mj ¼
qðr�vnjÞ

r qr
�

1

Re

q
r qr

r
qj
qr

� �

in which j is a dummy variable representing v or w.
The implicit left-hand sides of the matrix equations (24)–(26) are then written in different x, r and y sweeps,

in delta form and solved until Du, Dv, Dw and Dp are obtained, and the values of u, v, w and p are calculated
from

unþ1 ¼ un þ Du; vnþ1 ¼ vn þ Dv; wnþ1 ¼ wn þ Dw; pnþ1 ¼ pn þ Dp,

where un, vn and wn are the velocity components at the previous time level, n.
It should be mentioned that the values obtained for these quantities are the steady plus the complex

unsteady components. To obtain the amplitude and phase angle with respect to the displacement of the outer
cylinder, or real and imaginary parts of the velocity components and pressure, a Fourier Transform in discrete
form is used [32], which reads

HðkÞ ¼
1

N

XN�1
n¼0

gðnÞe�j2pkn
N , (28)

where g(n) represents u, v, w, or p.
During the time-integration procedure, as far as the movement of the solid walls is concerned, on the inner

cylinder the non-dimensional displacement ew(t) is zero, while on the outer cylinder in the plane of symmetry it
is given by Eq. (13), with the velocity of the wall expressed by _ewðtÞ ¼ �o sin ot. The velocities of the
boundary, vw and ww, for the case of translational motion of the outer cylinder are given by Eq. (12); see Fig.
3(b). For translational motion the vertical displacement of the centre of the outer cylinder is given by ew(t); for
rocking motion, the velocities vw and ww are linearly calculated with respect to the hinge position, Fig. 2, and
they are

vw ¼ _Eðt; xÞ cos y; ww ¼ � _Eðt;xÞ sin y, (29)

where _Eðt;xÞ ¼ dEðt;xÞ=dt, and E(t, x) is given by

Eðt;xÞ ¼ �
ewðtÞ

l2
xþ

ewðtÞðl1 þ l2Þ

l2
, (30)

where ew(t) comes from Eq. (13), and l1 and l2 are constants, as shown in Fig. 2.
In this analysis, first the steady solution is obtained without any boundary motion and then the results of

this solution are used to advance the unsteady solution, which is due to boundary movements. The major
difference between the steady and unsteady solutions, besides the boundary movement, is the method of
selecting the artificial compressibility factors, d, and pseudo-time steps, Dt. The selection of these factors for
both steady and unsteady cases is done as in Chorin [29] and Soh [33].

In the first part of the present work, since the oscillation amplitude of the outer cylinder is assumed to be
small, a fixed staggered grid [34], as shown in Fig. 4, related to the mean position of the moving boundary was
used. Hyperbolic tangent and hyperbolic sine stretching functions [35] were used to obtain the best possible
spatial resolution and concentrate more points in regions of higher velocity gradients, for example near solid
walls and discontinuities.

The problems under consideration were solved for 2-D and 3-D configurations. In 2-D, i.e., for the (r, y)
flow problem, either the length of the cylinders is considered to be sufficiently long as compared to the radii for
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Fig. 4. Schematic representation of the staggered grid used in the spatial discretization of the three-dimensional nonlinear equations.
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the x-component to be neglected in the computation, or the case of quiescent flow is considered. In 3-D
annular flow problems, which are of major concern in this analysis, the initial direction of the flow is taken to
be along the x-axis. Therefore, the initial values for the velocity and pressure should be defined at the inlet and
outlet of the domain, as well as on the fixed and moving boundaries. The values for u, v and p are imposed at
the inlet and outlet for the steady-state solution. The velocity profile in the steady state flow is given by the
following non-dimensional equations:

uðrÞ ¼
U�ðhrÞ

U
¼

2½1� ðr=riÞ
2
þ ðn2 � 1Þ lnðr=r1Þ= ln n�

n2 þ 1� ðn2 � 1Þ=ðln nÞ
; v ¼ 0; w ¼ 0, (31)

where U*(hr) and U are the dimensional axial and mean axial velocities in the annulus, respectively, and
n ¼ ro=ri. The velocities at the outlet of the annular space are obtained by extrapolating the known values of
the flow variables from inside the domain. The pressure at the outlet is set equal to zero, and on the moving
and fixed cylinders it is still set equal to zero due to the staggered girds used.

As mentioned earlier, this work is an improved version of the method used by Mateescu et al. [24–26]
(solution of the full nonlinear versus the solution of the simple and linearized N–S equations
developed by Mateescu and coworkers). Using this method, it was proved that (i) the method,
which is characterized by a favourable velocity–pressure coupling, enhancing the stability and eliminating
the need for added artificial damping terms, is stable up to large cell Reynolds number in laminar
flows; (ii) this method is valid as applied to several flow problems, such as driven cavity flow, 2-D flow
with a backward facing step and axisymmetric flow with backstep, for which the present method was
found to be in good agreement with previous results [28,33,39,40], and (iii) the results obtained for the
unsteady annular flow generated by small amplitude oscillations of the outer boundary of an annular
conduit by using a three-point backward implicit time-discretization is free of spurious, numerically
induced, oscillations of the pressure, which otherwise appeared when a Crank–Nicolson scheme is
used instead. The method has also been validated experimentally by the authors of this work, in a paper to
be published very soon.
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2.2. Forces acting on the cylinder and structural equations of motion

The fluid dynamic forces, which are expressed in terms of inertial, damping and stiffness components are
evaluated based on this viscous-flow analysis. The steady and unsteady forces are obtained by integrating the
pressure and skin friction around the cylinder. The resultant forces acting on the structure per unit length,
including the unsteady components, can be calculated by using the following stress equation in tensor form:

Pij ¼ �pdij þ m
qui

qxj

þ
quj

qxi

� �
, (32)

where qui/qxj represents the partial derivative of the velocity component in the i direction with respect to the j

coordinate, m is the dynamic viscosity, and dij denotes the Kronecker delta.
The steady forces, which are dependent on the gradients of the motion with respect to the axial

direction, are derived from the longitudinal frictional force and from the pressurization of the flow to
overcome the pressure drop. In this analysis, since these factors do not affect the problem, they are not
considered.

The unsteady viscous forces arise from the normal and tangential friction forces containing the effect of the
viscous pressure distribution along the circumference in a direction normal to the wall. Thus, the unsteady
forces acting on the outer cylinder per unit length due to its oscillatory motion can be obtained by multiplying
Eq. (32) by a unit vector normal to the outer cylinder and integrating the result:

F ðtÞ ¼

Z 2p

0

trrjr¼ro
cos y� tryjr¼ro

sin y
� �

ro sin ydy (33)

in which trr ¼ P11; try ¼ P12. The stress components can be written as

trrðr; y; tÞ ¼ �pþ 2m
qv

qr
; tryðr; y; tÞ ¼ m

1

r

qv

qy
þ

qw

qr
�

w

r

� �
. (34)

The forces obtained from Eq. (33) are used in the equation of motion of the structure to analyze the
dynamics and stability of the system. Hence, for translational motion of the outer cylinder one can write

M €yþ C _yþ Ky ¼ F ðtÞ, (35)

where M, C, and K are mass, damping and stiffness of the moving cylinder, respectively.
In the case of rocking motion, another stress component in the axial direction should be considered, i.e.,

trx ¼ mðqu=qrþ qv=qxÞ, and the force equation (33) is modified to

F ðtÞ ¼

Z 2p

0

trrjr¼ro
cos y� tryjr¼ro

sin yþ trxjr¼ro

dEðt;xÞ

dt

� �
ro sin ydy, (36)

where dE(t, x)/dt is obtained from Eq. (30). The equation of motion of the cylinder about a hinge point (Fig.
2) is written as

J €yþ Co
_yþ Koy ¼MoðtÞ, (37)

where Mo(t) is the moment of the fluid forces about the fixed hinge point, J is the moment of the inertia of the
cylinder about the hinge axis and y is the angular displacement of the cylinder; Co and Ko are the rotational
damping and stiffness constants of the cylinder.

Considering the characteristic length, h, and characteristic velocity, U, one can write Eq. (35) in
dimensionless form as

€�ðtÞ þ 2xon_�ðtÞ þ o2
n�ðtÞ ¼ s ~F ð�; _�Þ, (38)

where

on ¼

ffiffiffiffiffiffi
K

M

r
h

U
¼ o�n

h

U
; x ¼

C

2
ffiffiffiffiffiffiffiffiffi
KM
p ; s ¼

r�h3

M
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and ~F represents the non-dimensional fluid dynamic forces exerted on the cylinder. The equation of motion of
the structure in rocking motion, Eq. (37), can similarly be written in non-dimensional form as

€yðtÞ þ 2xonR
_yðtÞ þ o2

nRyðtÞ ¼ s ~Moðy; _yÞ, (39)

where

onR ¼

ffiffiffiffiffiffiffiffiffiffiffi
Koh2

J

s
h

U
¼ o�nR

h

U
; x ¼

Coh

2
ffiffiffiffiffiffiffiffiffi
KoJ
p ; s ¼

r�h5

J
,

with ~Mo as the non-dimensional moment of the fluid dynamic forces exerted on the cylinder. In Eqs. (38) and
(39), on (onR for rocking motion) and x are the dimensionless frequency and damping ratio, respectively, while
s is a dimensionless factor weighting the relative contribution of the fluid and mechanical forces; on* or onR*
is the dimensional natural circular frequency of the structure, and r* is the dimensional fluid density. The non-

dimensional fluid force ~F is a function of e(t), _�ðtÞ, and €�ðtÞ through the added stiffness, added damping and
added mass effects, respectively, but €�ðtÞ is not needed explicitly in the numerical evaluation of the fluid forces
and e(t) is not needed either for the small amplitude analysis of the fluid forces. The non-dimensional fluid

moment ~Mo is, equivalently, a function of y(t), _yðtÞ and €yðtÞ.

2.3. Solution of the structural equation and stability

To integrate Eq. (38) or Eq. (39), as the case may be, it is assumed at the beginning that the time level tn has
been reached, where all the quantities necessary to describe the structural motion are known: the displacement
e, the velocity _�, and the acceleration, €�, of the structure, and the fluid forces acting on it, ~F ð�n; _�nÞ � ~F

n
. These

quantities are known at all previous time levels tk, kpn, and the solution is advanced to tn+1. For structural
motion analysis, this is done using a second-order Runge–Kutta scheme, defined by the sequence

Predictor step:

�nþð1=2Þ ¼ �n þ
Dt

2
_�n; _�nþð1=2Þ ¼ _�n þ

Dt

2
€�n, (40,41)

~F
nþð1=2Þ

¼ ~F _�nþð1=2Þ

 �

, (42)

€�nþð1=2Þ
¼ �2xon_�

nþð1=2Þ � o2
n�

nþð1=2Þ þ s ~F
nþð1=2Þ

; (43)

Corrector step:

�nþ1 ¼ �n þ Dt_�nþð1=2Þ; _�nþ1 ¼ _�n þ Dt€�nþð1=2Þ, (44,45)

~F
nþ1
¼ ~F ð_�nþ1Þ, (46)

€�nþ1
¼ �2xon_�

nþ1 � o2
n�

nþ1 þ s ~F
nþ1

, (47)

thus, the displacement as well as velocity and acceleration of the outer cylinder as a function of time are
determined.

One of the important factors influencing the stability analysis through the solution of, for example, Eq. (38)
and similar ones, is the determination of the value of s. Linearized potential flow theory provides the per unit
length non-dimensional added mass, sm, for the geometry under consideration. This parameter may be
expressed as

sm ¼
r�h2

ma

¼
1

pr2o

z2 � 1

z2 þ 1
; (48)

where ma is the dimensional fluid added mass and z ¼ ro=ri. Thus, sM ¼ smma ¼ r*h2 or sm/s ¼M/ma for 2-
D analysis. To start the stability analysis, either this ratio must be known in advance, or it must be chosen in
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such a way that a reasonable structural behaviour is obtained. When the fluid added mass exceeds the
structural mass, numerical difficulties may arise (refer, for example, to Ref. [41]). In this analysis, only cases
where the fluid-added mass is smaller than the mass of the structure, are considered. Thus, the value of
s ¼ sm/2.0 chosen corresponds to a structural mass M equal to twice the fluid added mass ma determined by
potential flow theory.

In 3-D analysis, sM ¼ smma ¼ r*h3 and potential flow theory gives the equation of motion of the
oscillating cylinder in translation as [20]

ð1þ sq2Þ€�þ ð2xon þ sq1Þ_�þ ðo
2
n þ sqoÞ� ¼ 0, (49)

where q2, q1 and qo are the non-dimensional added mass, added damping and added stiffness, given by

q2 ¼
Ma

r�h3
; q1 ¼

Cah

MU
; qo ¼

Kah2

MU2

in which Ma, Ca and Ka are similar dimensional quantities. Then, for 3-D potential flow, s is obtained from

sq2 ¼
r�h3

M

Ma

r�h3
¼

Ma

M
. (50)

Once again, the mass ratio is selected to be M/Ma ¼ 2.0, and to find s the added mass q2 must be known.
For this purpose the coupled structural and potential flow equations without the damping term are solved [36].

For rocking motion of the outer cylinder, a similar equation as Eq. (49) is solved but with e replaced by y.
For this case, sq2 ¼ Ja/J applies and the ratio J/Ja ¼ 2.0 is selected, as explained before.

For 3-D solution of axially variable annular configurations, the annular space considered consists of two
concentric cylinders in which the inner one has a diffuser shape as shown in Fig. 1(c). In this figure, hrd is the
diffuser height, which is equal to half the annular gap, e.g., hrd ¼ hro�hri ¼ h. The diffuser half-angle was
chosen to be either a ¼ 61 or 201.

In order to generalize the problem, it is necessary to transform the annular space (r*, x*) in the physical
domain of Fig. 1(c) into a rectangular computational domain (r, x). For this purpose, it is convenient to define
the non-dimensional transformation equations as

r ¼
Rhr� h2ri�ðhxÞ

R� h�ðhxÞ
,

t ¼ t�; y ¼ y�; R ¼ hri � hrid ; X ¼ hx2 � hx1, ð51Þ

where h�ðhxÞ ¼ Rhðx2 � xÞ=X ; the starred quantities indicate the non-transformed physical quantities;
h�ðhxÞ ¼ hr� hrid indicates the radial distance from the centreline in Fig. 1(c) to any point on the surface of
the diffuser section, and hx2�hx1 is the axial length of this section. In this transformation, all functions having
continuous partial derivatives in the physical cylindrical domain will be expressed in the form of functions in
the computational domain and all conservation laws are satisfied. Although this transformation makes the
matrix equation (27) more complex, it enhances the accuracy of the computation.

3. Time-dependent transformation analysis (large amplitude oscillation)

If the amplitude of the outer cylinder motion is considered to be small we can consider the boundary
conditions to be applied at the mean-position (MP) of the outer cylinder, as in Section 2 and as shown in Fig.
3(a). For large amplitude motions, however, these boundary conditions are applied at the true position of the
outer cylinder. The objective then is to solve the problem on a moving physical domain, i.e., for large
amplitude oscillations. This necessitates the TDCT of the equations from the physical domain to a fixed
computational counterpart. With the partial time derivatives in the physical solution equations replaced by
partial time derivatives at fixed values of the curvilinear coordinates, the grid in the transformed plane is fixed
even though the coordinate system in the physical plane is in motion. This introduces time derivatives of the
coordinates into the transformed physical solution equations, in the role of additional convective terms; see,
e.g., Ref. [37]. In this work, it is possible to perform all the computations on a fixed rectangular grid in the
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transformed computational region without any interpolation, no matter how the grid points move in the
physical domain as time progresses. The transformation procedure is briefly given here. For more details, see
Mekanik [38].

It is necessary to transform the annular space (r*, y*) from the more general problem of eccentric cylinders
in the physical domain of Fig. 5(a) to the rectangular computational domain (r, y), as shown in Fig. 5(b). This
is achieved by the non-dimensional transformation equations

r ¼
ðr� � RiÞ

½R2
o � �

2ðt�Þ sin y��1=2 � Ri þ �ðy
�; t�Þ

,

y ¼ y�; t ¼ t�, ð52Þ

where �ðy�; t�Þ ¼ �ðt�Þ cos y�, in which the starred quantities indicate the physical domain. The equivalent
forms of Eqs. (5) and (6) in the transformed domain can be written in (r, y) as

qV
qt
þ rC

qV
qr
þGðV; pÞ ¼ 0, (53)

r � V ¼
qu

qx
þ

1

r�
A
qr�v

qr
þ rB

qw

qr
þ

qw

qy

� �
¼ 0. (54)

The component Gv(u, v, w, p) of vector G(V, p), for example, is given by

Gvðu; v;w; pÞ ¼
qðuuÞ

qx
þ

A

r�
q
qr
ðr�vvÞ þ

1

r�
qðwvÞ

qy
�

w2

r�
þ A

qp

qr
þ rC

qv

qr
þ

rB

r�
qðwvÞ

qr

�
1

Re

q2u
qx2
þ

A

r�
q
qr

Ar�
qv

qr

� �
þ

1

r�2
q2v

qy2
�

2

r�2
qw

qy
�

v

r�2

�

þ
ðrDþ rB2Þ

r�2
qv

qr
þ

r2B2

r�2
q2v
qr2
�

2rB

r�2
qw

qr
þ

2rB

r�2
q2v
qr qy

�
. ð55Þ

By this transformation, the matrices Mx and My remain intact, but Mr in Eq. (27) is changed and is now
given by

Mr ¼

M 0 0 0

0 Mþ 1=bþ 1=ðRern2Þ 2rB=ðRern2Þq=qr� �wn
�

rn Aq=qr

0 �2rB=ðRern2Þq=qr Mþ �vn=rn þ 1
�
ðRern2Þ rB=ðrnÞq=qr

0 ð1=bdÞð1=r� þ Aq=qrÞ rB=ðbdrnÞq=qr 0

2
66664

3
77775 (56)
IR

)(tε B
C

θ OR

� sin(�)

r

1

OA

� cos(�)

��

(a) (b)

Fig. 5. (a) Physical and (b) transformed computational domains for two concentric cylinders with moving outer cylinder while in motion.
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in which

Mj ¼ rC �
ðrDþ rB2Þ

Rer�2

� �
qj
qr
þ

A

r�
qðr� �vnjÞ

qr
þ

rB

r�
qð �wnjÞ
qr

�
1

Re

A

r�
q
qr

Ar�
qj
qr

� �
þ

r2B2

r�2
q2j
qr2
þ

2rB

r�2
q2j
qr qy

� �
, ð57Þ

where j is a dummy variable representing v or w and �vn and �wn are the velocity components at pseudo-time
level n.

In these equations, the transformation parameters are given by

A ¼
1

Rðy; tÞ � Ri þ �ðy; tÞ
; B ¼

A2ðr� � RiÞð�ðtÞ sin yÞ
r

��ðtÞ sin y tan y
Rðy; tÞ

þ 1

� �
,

C ¼ �A_�ðtÞ cos y
��ðtÞ sin y tan y

Rðy; tÞ
þ 1

� �
,

D ¼ A2 ðF1 þ F 2Þ�ðtÞ sin yþ F3�ðtÞ cos y½ �½Fðy; tÞ�1=2 � 2F3F4�ðtÞ sin y
n o

ð58Þ

in which

Rðy; tÞ ¼ ½R2
o � �

2ðtÞsin2 y�1=2;Fðy; tÞ ¼ Rðy; tÞ � Ri þ �ðy; tÞ,

F 1 ¼ ��ðtÞ½1þ ð1=cos
2 yÞ�ð1=Rðy; tÞÞ sin y,

F 2 ¼ ��
3ðtÞð1=Rðy; tÞ3Þsin3 y,

F 3 ¼ ��ðtÞð1=Rðy; tÞÞ sin y tan yþ 1,

F 4 ¼ ��
2ðtÞ½ð1=Rðy; tÞÞ cos y� �ðtÞ� sin y. ð59Þ

It is observed that the differential equations in the transformed domain become more complicated than in
the physical one due to the extra convective and diffusive terms, in addition to the cross-derivative terms,
which reflect the non-orthogonal nature of the coordinates, all of them arising from the transformation.
During the solution procedure, the cross-derivative terms destroy the tridiagonal aspect of the system of
equations to be solved; hence these terms are evaluated explicitly. From now on, the N–S and continuity
equations (53) and (54) are solved on the fixed computational domain rather than on the moving physical
domain. The rest of the procedure for solving the N–S equations and stability analysis is the same as for the
MP analysis (in Section 2).

4. Results

This problem is the kind of problem that needs a complete parametric study. There are several factors
influencing the response of the structure to fluid flow and affecting the final objective, i.e., the stability of the
system. The non-dimensional parameters affecting the stability of the systems are: the gap width, h; the radii of
the inner and outer cylinders, ri and ro; the length of the central oscillating part of the outer cylinder, l; the
fixed lengths upstream and downstream of the oscillating cylinder, lo; the mean flow velocity, U; the Stokes
number S or equivalently the frequency of the oscillating cylinder, on; the amplitude of oscillation of the outer
cylinder, e; the mesh size; the compressibility factor, d; the pseudo-time step, Dt, and the real time step, Dt, to
name but the most important factors. We cannot show the effects of all of these parameters on the stability of
the system in a single paper, i.e., in the present work. Instead, we present samples of the results for certain sets
of these parameters.2

A satisfactory grid generation and grid point distribution are the major requirements for the numerical
solution to be accomplished successfully in terms of accuracy and stability. To this end, the numerical
computations have been performed on a non-dimensional mesh with different axial lengths, different inner
2Certainly, a great deal remains to be done before the equivalent of stability maps, showing the effect of the main parameters, can be

constructed, leading to design guidelines.
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and outer radii for the annulus and 0pypp, with 89� 12� 15 grid points in the x, r, and y directions,
respectively. The effect of the number of grid points and of grid stretching in staggered mesh used on the
accuracy of the numerical solution has already been studied extensively [38]. In 2-D analysis, there is about
0.2% difference between the results of the unsteady pressure amplitude for the mesh that consists of 12� 15
grid points in the r- and y-directions vis-à-vis the meshes having 30� 15 or 20� 30 grid points in these
directions. In 3-D solutions, the same conclusion is reached for the x-direction, i.e., a mesh size 65� 12� 15
gives as accurate results as 89� 12� 15 grid points in the x-, r- and y-direction. This is why in the present work
the results for the latter grid distribution are presented, since it provides faster computation as well. Only
representative results are presented. The figure captions describe the geometrical characteristics of the system
analyzed.

For a quiescent fluid, in this analysis, in order to be able to obtain a solution, one needs to define an
equivalent Reynolds number in the computational program. This can be done by selecting the Stokes number

(based on the frequency of oscillation, o*, annular gap width, h, and fluid viscosity, nn), and using the

relations ReDh
¼ 2Uh=nn; S ¼ o�h2=nn based on the hydraulic diameter of the annulus, from which the non-

dimensional frequency o can be written as o ¼ o�h=U ¼ 2S=ReDh
. The computation can be done for

different Reynolds and Stokes numbers (also defined as S ¼ oReDh

�
2, which is related to the vibrational

characteristics of the system) always in the laminar regime. For all of the results obtained in this work, the
time step Dt ¼ T/N with N ¼ 19 and the compressibility factor d and pseudo-time step Dt were chosen based
on the criteria supplied by Soh and Goodrich [28] and Chorin [29]. Also, numerical experiments have been
performed to determine the optimum values for the artificial compressibility and the pseudo-time step in order
to achieve rapid convergence. It was found that these numerical experimentations confirmed the following

theoretical relations derived earlier by Mateescu et al. [27], based on the theory of characteristics: d ¼
1=ð4q2DtÞ and Dt ¼ CDx=½bqþ ðb2q2 þ b=qÞ1=2�, where q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ w2
p

; b ¼ 2Dt=3 and C is the
Courant–Friedrichs–Levy number, for which an average value between 30 and 40 has been considered.
These conclusions have been used in the present analysis to define the stretched staggered mesh used for
various problems and to determine the optimum values for d and Dt as functions of the non-dimensional real-
time step, Dt. Numerical computations were also performed to study the effect of the non-dimensional real-
time step, Dt, on the accuracy and convergence of the present numerical solution [38]. Typical results showing
the effect of Dt ¼ T/N ¼ 2p/N on the present 3-D numerical solution for the reduced unsteady pressure
amplitude at x ¼ l/2, r ¼ 9.965 and y ¼ 7.51 for ri ¼ 9, ro ¼ 10, l ¼ 100, l0 ¼ 100, ReDh

¼ 250; S ¼ 25 and

� ¼ 0:1 show that accurate solutions are obtained with a number N of real-time steps per oscillatory cycle
between 40 and 60, and that N ¼ 30 can still be used with a reasonably good accuracy for 3-D problems, and
N ¼ 19 for 2-D flows. However, although the number of pseudo-time iterations decreases with increasing N (it
is halved when N is increased from 19 to 40), the overall computations become expensive for larger numbers of
real-time steps per oscillatory cycle. For this reason, most of the results given in this paper were computed with
N ¼ 19, which still provide an acceptable engineering accuracy. In all computations, convergence was reached
and the iterations were stopped in pseudo-time when the rms values of the numerical residuals of the
momentum and continuity equations were all less than 10�4, which is low enough to ensure that the governing
equations of fluid motion are satisfied for each real-time step. Also, the validation of the present results with
the results of references [24–26] based on the same method of solution (MP analysis) indicates that this value
for the residuals is small enough to ensure the accuracy of the results obtained in this work.

The order of the presentation of the results is: first for uniform annular geometry, then for a non-uniform
annulus with a backward facing step, and finally for a diffuser-shaped geometry. Section 4.1 presents the MP
results, while Section 4.2 presents the TDCT results.

4.1. Mean position analysis results

4.1.1. Results for prescribed oscillatory motion

Figs. 6(a) and (b) illustrate the unsteady pressure and phase angle for different amplitudes of oscillation of
the outer cylinder with translational motion in a uniform annular geometry. It can be seen that the amplitude
of the pressure increases almost linearly with the amplitude of oscillation. The phase angle also increases with
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Fig. 6. Left: (a) The non-dimensional unsteady pressure p and (b) the corresponding phase with respect to the translational displacement

of the outer cylinder versus axial coordinate of the cylinder in a uniform annular geometry at r ¼ 9.965, y ¼ 7.51; ——, e ¼ 0.1; - - - -,

e ¼ 0.2, – � – � –, e ¼ 0.3. Right: (c) the distribution of the circumferential velocity w versus r and (d) the corresponding phase; for e ¼ 0.1,

X ¼ 50, y ¼ 451. In both left and right figures ReDh
¼ 250; ri ¼ 9; ro ¼ 10; and o ¼ 0.2.
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amplitude. Figs. 6(c) and (d) present the circumferential velocity w as a function of the radial coordinate r, and
the corresponding phase angle obtained at X ¼ 50 and y ¼ 451. In the notation of the figure, the moving part
of the outer cylinder extends from X ¼ 0 to 100. It is noted that both the amplitude and phase are sensibly
constant over the central portion of the moving cylinder, i.e., 20oXo80 approximately. It should also be
noted that both the amplitude and the phase are dependent on the frequency of oscillation o—as well as on
the other system parameters.

Figs. 7(a) and (b) present the pressure and phase angle for different amplitudes of oscillation of the outer
cylinder with translational motion of the outer cylinder for annular geometry with a backstep. Again, the
pressure amplitude is a function of oscillation amplitude. The phase angles remain almost the same. Figs. 7(c)
and (d) show the circumferential velocity w and its phase angle obtained at X ¼ 20 and y ¼ 451, which is just
after the step. In terms of the form of w(r), it is remarkable that it is only slightly skewed, in the sense that the
maximum is only slightly closer to the inner boundary (the centre-body) than to the outer cylinder wall. It is
immediately obvious that the shape of both pressure and phase in Figs. 7(a) and (b) are quite different
from those in Fig. 6(a) and (b). Clearly, the expansion in the annular passage at X ¼ 20 has an effect
throughout the annulus, from X ¼ �20 to 60 (though only the results from X ¼ 0 up to 40 are required).
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Fig. 7. Left: (a) The non-dimensional unsteady pressure p and (b) the corresponding phase with respect to the translational displacement

of the outer cylinder versus axial coordinate of the cylinder in uniform annular geometry with a backstep at r ¼ 9.965, y ¼ 7.51; ——,

e ¼ 0.1; - - - -, e ¼ 0.2, – � – � –, e ¼ 0.3. Right: (c) the distribution of the non-dimensional circumferential velocity w versus r and (d) the

corresponding phase; for e ¼ 0.1, X ¼ 20, y ¼ 451. In both left and right figures ReDh
¼ 250; rid ¼ 8; ri ¼ 9; ro ¼ 10 (Fig. 1(b)), and

o ¼ 0.2.
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Significantly, the largest pressure amplitude in this case, near X ¼ 0, is significantly lower (pE0.6) than for the
uniform annulus (pE1.5 in Fig. 6(a)). Hence, the effect of the enlargement propagates all the way to the
upstream end.

Figs. 8(a) and (b) present the unsteady pressure and phase angle for different amplitudes of oscillation of the
outer cylinder with rocking motion in the uniform annular geometry. The hinge about which the rocking
motion takes place is located at X ¼ 81.0. Figs. 8(c) and (d) present the unsteady pressure and phase angle for
backstep geometry when the outer cylinder is in rocking motion.3 Here, the hinge is located at X ¼ 82.0. When
there is a fluid flow, the effects of having a step are clearly seen in this figure. Figs. 8(a) and (b) are not directly
comparable in terms of magnitudes with Figs. 6 and 7 since the system parameters are very different (higher
Re and o, and smaller e). However, some qualitative differences in the results for rocking motion between this
figure and Fig. 7 are to be noted. For a uniform annulus, the highest amplitude occurs at the upstream end
(where the oscillation amplitude is largest, as the hinge is towards the downstream end of the rocking
3What has been shown in Fig. 8(d) is what was obtained by FFT analysis of the results. In Fig. 8(d), since tan 2001 ¼ tan (�1601), the

jump in the region 85oxo95 of this figure can be removed and a smooth curve can be drawn at j ¼ �1601.
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Fig. 8. (a, c) The non-dimensional unsteady pressure amplitude and (b, d) phase angle during rocking motion of the outer cylinder for

ri ¼ 4:785; ro ¼ 5:785. Left figures for uniform annular space with o ¼ 0:703; ReDh
¼ 2900, ——, e ¼ 0.05735; - - - -, e ¼ 0.1075; – � – � –,

e ¼ 0.16125 and hinge location at X ¼ 81:0. Right figures are for a backstep geometry, for o ¼ 0:5; ReDh
¼ 400; � ¼ 0:1075 and hinge

location at X ¼ 82.0.
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cylinder); also of importance is the fact that the largest amplitude attained is much larger than in Fig. 7 (or, for
that matter, in Fig. 6), as a result of the flow velocity and also o being so much higher in this case. It is also
remarkable that the pressure distributions for the uniform geometry (Fig. 8(a)) and backstep geometry (Fig.
8(c)) in this case are much more similar to each other than those in Figs. 6 and 7 are.

Figs. 9(a) and (b) present the unsteady pressure and phase angle for different oscillation amplitudes of the
outer cylinder in translational motion for annular flow in a diffuser-shape geometry with a ¼ 61. This figure
should be compared with the results of Figs. 7(a) and (b). In the downstream portion of the annulus, in Fig.
9(a), the pressure recovery is noticeable vis-à-vis the backstep geometry in Fig. 7(a). The phase angles are also
almost independent of the vibration amplitudes. The unsteady pressure and phase angles shown in Fig. 9(c)
and (d) have been obtained for a diffuser angle a ¼ 201. These results indicate that the behaviour of this kind
of diffuser is similar to that of a system with a backstep geometry, and that the pressure recovery is not as
pronounced as in the case of a diffuser with a ¼ 61.

A comparison between the unsteady pressure and phase angle for three different geometries is made in
Fig. 10. This figure shows that the pressure recovery is more pronounced for a diffuser with a ¼ 61 than for
either the diffuser with a ¼ 201 or the backstep geometry. The phase angle results for the three geometries also
display different trends, and clearly this has repercussions on the stability of such systems.
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Fig. 9. (a, c) The non-dimensional unsteady pressure and (b, d) phase angle versus axial length of the cylinder in translational motion for

ReDh
¼ 100; o ¼ 0:1; ——, e ¼ 0.05735; - - - -, e ¼ 0.1075 and – � – � –, e ¼ 0.16125. Left figures for a ¼ 61, rid ¼ 8; ri ¼ 9; ro ¼ 10,

l ¼ 40 (Fig. 1(c)) at r ¼ 9:942. Right figures for a ¼ 20�; rid ¼ 3:785; ro ¼ 5:785; l ¼ 100 at r ¼ 5:727.
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4.1.2. Stability of the system

For stability analysis, we assume that the length of the structure is very large; hence for simplicity, we can
use the method of solution of Section 2 in two dimensions r and y and eliminate the calculation in the x

direction. To study the added damping produced by the motion of the cylinder in the fluid, the coefficient of
the structural damping, C appearing in Eq. (35), is taken to be zero. Fig. 11 shows the displacement of the
oscillating cylinder as a function of Reynolds number, for a system with ri ¼ 9 and ro ¼ 10. From Fig. 11, we
see that at very low Reynolds number, ReDh

¼ 4, viscosity dominates the solution and motion is so highly
damped that no oscillations are possible: the system is overdamped. As the Reynolds number increases,
ReDh

¼ 200, damped oscillation develops. As the Reynolds number becomes larger, ReDh
¼ 2000, the viscous

solution gets closer to the potential (inviscid) flow solution (also shown in the figure), i.e., zero dissipation, and
hence zero fluid damping [20].

For an annular geometry of given dimensions and outer cylinder of mass M, the change in natural
frequency on (of the system in vacuum) corresponds to a system in which the spring stiffness K is varied. The
selection of natural frequency on ¼ 1 indicates that, for a stiff system, the viscous solution is not as
highly damped as for a system which has less rigidity, i.e., on ¼ 0.1. Fig. 12 shows the effect of different
values of on on the stability of the structure in a uniform annular geometry when the outer cylinder is in
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Fig. 10. (a) The non-dimensional unsteady pressure and (b) phase angle for ReDh
¼ 100; o ¼ 0:1; rid ¼ 3:785; ro ¼ 5:785,

� ¼ 0:1075 at r ¼ 5:727; y ¼ 7:5�. Comparison between the results obtained for: ——, backstep; – – – –, diffuser with a ¼ 61; – � – � –,

diffuser with a ¼ 201.

Fig. 11. Displacement, e, of the outer cylinder in translational motion versus time, Tn ¼ 2p=on, with on ¼ 1 for a 2-D annulus;

– � � – � � –, ReDh
¼ 4; ——, ReDh

¼ 200; – – – –, ReDh
¼ 2000; – � – � –, potential flow [20].
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Fig. 12. Displacement, e, of the outer cylinder in translational motion versus time, Tn ¼ 2p=on, for ReDh
¼ 200 and uniform annular flow:

(a) on ¼ 0:1, (b) on ¼ 1.

Fig. 13. Comparison between the dynamical behavior of the system in translational motion for different geometries and for

on ¼ 0:1 and ReDh
¼ 200; ——, uniform; – – – –, backstep; – � – � –, diffuser with a ¼ 61; – � � – � � –, diffuser with a ¼ 201.
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translational motion. Clearly, for the stiffer system (on ¼ 1) the damping is less pronounced, and the
effective logarithmic decrement is much smaller. Figs. 13–16 present the time evolution for the displa-
cement of the vibrating outer cylinder, where the viscous flow results were obtained for a less stiff structure
(on ¼ 0.1).

Fig. 13 presents a comparison of the dynamical behaviour of all the annular geometries considered for
translational motion and on ¼ 0.1, ReDh

¼ 200. It is seen that the most stable (most highly damped) system is
the uniform annular system and the least stable is that involving a backstep. Also, regarding the coupled
frequency of oscillation it is clear that the oscillation frequency changes with the geometry, i.e., the smaller
coupled oscillation frequency belongs to the backstep geometry while the larger one belongs to the diffuser
geometry with half-angle a ¼ 61.

Finally, Fig. 14 shows the results of a system with uniform annular geometry in rocking motion, for a
slightly higher Re than in the foregoing and structural damping Co (Eq. (37)) equal to zero. This figure
indicates that the system initially appears to diverge, but it recovers and then oscillates with almost constant
frequency and amplitude; i.e., it approaches a flutter-related limit-cycle oscillation.
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Fig. 14. Displacement y versus time, Tn ¼ 2p=on, for on ¼ 0:1; ReDh
¼ 250. Uniform annular geometry with rocking motion of the

outer cylinder, hinge point at X ¼ 90.0.

Fig. 15. (a) The non-dimensional unsteady pressure and (b) phase angle for ReDh
¼ 250, o ¼ 0:2, ri ¼ 9:0; ro ¼ 10:0, � ¼ 0:2 at

r ¼ 9:965; y ¼ 7:5�; ——, time-dependent transformation analysis; – – – –, mean-position analysis.
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Fig. 16. (a) The non-dimensional circumferential velocity w and (b) phase angle with respect to the displacement of the outer cylinder for

ReDh
¼ 250, o ¼ 0:2, ri ¼ 9:0; ro ¼ 10:0, � ¼ 0:2 at mid-gap, X ¼ 50 and y ¼ 45�; ——, time-dependent transformation analysis; – – – –,

mean-position analysis.
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4.2. Time-dependent transformation analysis results

The computations with the model for larger amplitude oscillations using the TDCT were performed for the
same annular spaces, the same meshes, etc. as those for small amplitude oscillations using the MP model, for
the purpose of comparison of the results. As a first step, the amplitude and velocity of the moving boundary
are calculated using the appropriate equations and are kept constant throughout the pseudo-time relaxation.
The other initial and boundary conditions are given or calculated following the same procedure as described in
the previous sections.

Fig. 15 presents the unsteady pressure amplitude and phase angle versus the axial length of the cylinder for
both MP and TDCT analyses; in this figure lo ¼ 20, ri ¼ 9.0, and ro ¼ 10.0 as in Fig. 1(a). This result shows a
25% and 16% increase, approximately, in the pressure amplitude and phase, respectively, when the more
accurate TDCT analysis is used.

Fig. 16 demonstrates the effect of larger-amplitude oscillation on the circumferential velocity w and on its
phase angle. It is seen that the amplitude of w does not vary too much, but a substantial change in its phase
angle is noted. It must be mentioned that in Fig. 16 the annular space h shown is 0php1, whereas it is
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9php10 in the MP analysis; this relation is simple and obvious if one notes that the non-dimensional annular
gap is always h ¼ 1, and hence one can present the results for both methods on the same diagram.

Fig. 17 is presented to demonstrate the effects of the change in annular dimensions, ri ¼ 4:785 and ro ¼

5:785 as compared to those in Fig. 15 (see Fig. 1(a)), and also the change in the lengths of the fixed upstream
and downstream portions of the outer cylinder, lo ¼ 60, on the results. In Fig. 17(a) and (b), the comparison
between the results obtained using both methods of solution but for higher frequency of oscillation (f ¼ 20Hz)
in quiescent fluid is demonstrated. In Fig. 17(a) compared to Fig. 15(a), although the fixed portions at the
extremities of the moving cylinder have larger lengths, lo ¼ 60 in Fig. 1(a), the time-dependent solution
demonstrates an increase of 6% in the pressure amplitude, which is due to the larger value of the oscillation
frequency. Fig. 17(b) presents, as usual, lower values for the phase angle, as compared to the one obtained by
the MP analysis. Figs. 17(c) and (d) present the pressure amplitude and phase angle for fluid flow with
ReDh

¼ 2900 and frequency of oscillation f ¼ 20Hz. Once again, the mean values for the unsteady pressure
obtained from the two approaches are almost the same since the amplitude of oscillation in this case is small,
i.e., e ¼ 0.05375; the effect on the phase angle is similar to that in previous figures.

Similar results for the backstep geometry are shown in Fig. 18. As expected, there are some differences in the
results; i.e., there is an overall increase in the value of pressure in comparison to that obtained through the MP
analysis; also, the phase angle (after the step geometry) is closer to zero than the corresponding value obtained
Fig. 17. (a, c) The non-dimensional unsteady pressure and (b, d) phase angle for ri ¼ 4:785; ro ¼ 5:785; � ¼ 0:05375 at

r ¼ 5:727; y ¼ 7:5�; ——, time-dependent coordinate transformation analysis; – – – –, mean position analysis. Figures (a, b) for U ¼

0:0; o ¼ 1 ðf ¼ 20HzÞ and Figs. (c, d) for ReDh
¼ 2900; o ¼ 0:463 ðf ¼ 20HzÞ.
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Fig. 18. (a) The non-dimensional unsteady pressure and (b) phase angle in annulus with backstep geometry for ReDh
¼ 100; o ¼

0:1; rid ¼ 8; ro ¼ 10 at r ¼ 9:942; y ¼ 7:5� with � ¼ 0:2; ——, time-dependent transformation analysis; – – – –, mean-position analysis.

(c, d) Circumferential velocity w and phase angle at X ¼ 50; y ¼ 45�.
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by the MP approach. The pressure recovery after the step is very clear, which would influence the stability of
the system.

Finally, to demonstrate that the time-dependent-coordinate solution is necessary at much higher amplitudes
of oscillation than the MP approach, Fig. 19 shows results for e ¼ 0.5 (for ri ¼ 9.0 and ro ¼ 10.0). It is seen
that at this amplitude of oscillation there are large differences in the pressure; the phase angles nevertheless are
very much closer to each other, the difference tending toward zero.

For stability analysis using the TDCT and MP models, some comparisons are made between the results of
the two models. Fig. 20 presents a comparison between the displacements of the outer cylinder for ReDh

¼ 200
and on ¼ 1 for 2-D analysis. It is seen that the TDCT analysis predicts lower damping and higher frequency of
oscillation than the MP analysis, which means that the structure is more prone to instability. Fig. 21 shows a
similar comparison in the behaviour of the cylinder for a less stiff structure, on ¼ 0.1 and 3-D analysis.
Comparison between this figure and Fig. 20 indicates that (i) less stiff structures are more damped no matter
which model is used and (ii) TDCT analysis again predicts lower damping and higher frequency of oscillation
for the coupled system.

Fig. 22 presents the displacement of the outer cylinder for an annular geometry with backstep. Again, the
behaviour of the system is very different when the TDCT model is used. Comparison between this figure and
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Fig. 19. (a) The non-dimensional unsteady pressure and (b) phase angle for ReDh
¼ 250; o ¼ 0:2, ri ¼ 9:0; ro ¼ 10:0, � ¼ 0:5 at

r ¼ 9:965; y ¼ 7:5�; ——, time-dependent transformation (TDCT) analysis; – – – –, mean-position (MP) analysis.

Fig. 20. Comparison between the displacements, e, of the outer cylinder in translational motion versus time, Tn ¼ 2p=on, with on ¼ 1 for

2-D and ReDh
¼ 200: – – – –, MP analysis; ——, TDCT analysis.
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Fig. 21. Comparison between the displacements, e, of the outer cylinder in translational motion versus time, Tn ¼ 2p=on for uniform

annular geometry, with on ¼ 0:1 and ReDh
¼ 200: – – – –, MP analysis; ——, TDCT analysis.

Fig. 22. Comparison between the displacements, e, of the outer cylinder in translational motion versus time, Tn ¼ 2p=on for annular

geometry with backstep, for on ¼ 0:1and ReDh
¼ 200: – – – –, MP analysis; ——, TDCT analysis.
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Fig. 21 indicates that introducing a backstep into the structure influences the stability of the system, i.e., the
existence of the backstep generates a pressure recovery after the step (as shown in Fig. 18) and this pressure
recovery affects the motion of the structure. Also, for the same Reynolds number and structural frequency,
ReDh

¼ 200; on ¼ 0:1, the TDCT analysis indicates a lower frequency of oscillation for the coupled system
with backstep (Fig. 22) than for the system without backstep (Fig. 21).

5. Conclusions

The time-integration of the incompressible laminar N–S and continuity equations was effected by using the
method of artificial compressibility in conjunction with a three-point backward implicit real-time differencing
scheme. After the semi-discretization, artificial pseudo-time derivative terms were added to the equations,
including artificial compressibility in the continuity equation. The solution was advanced from one real
(physical) time level to the next by integrating in pseudo-time until steady state was reached. The equations
were cast in delta-form after differencing the pseudo-time derivatives by using a Euler scheme. The solution
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was effected by using the approximate factorization and ADI techniques, and finite differences were used in
which the spatial differential operators were written on stretched staggered grids.

The theoretical results obtained predict the behaviour of the structure (the outer cylinder) when it is set in
motion from rest. The coupling of the unsteady flow and the structural equations was effected through a
predictor-corrector Runge–Kutta scheme to integrate the equation of the structure under the combined action
of mechanical forces and fluid forces obtained from solving the N–S equations. The stability of the system was
analyzed for (i) a 2-D (infinitely long) annular space and (ii) 3-D annular flows with different geometries and
translational oscillation of the outer cylinder and (iii) uniform annular geometry and rocking motion of the
outer cylinder. In the case of 2-D analysis it was shown that the outer cylinder is more stable when the
Reynolds number is not very large (in the laminar regime), and that as it becomes larger the system becomes
less stable. The 2-D and 3-D results obtained for uniform annular viscous flow indicate the generation of a
viscosity-related added damping (which is not present for potential flow).

For a fixed Reynolds number, going from the uniform to the stepped geometry has a destabilizing effect on
the system according to viscous theory (i.e. a reduction in flow-induced damping is generated). However, the
system with a diffuser section is a more stable configuration than the geometry with a backward step,
especially for a diffuser with a half-angle a ¼ 61. The diffuser with a ¼ 201 behaves almost like a backstep
geometry, but in comparison it has a higher oscillation frequency. It is also concluded that for a uniform
annular system and translational motion of the cylinder, when the natural frequency on is reduced, by
decreasing the spring stiffness K, the motions are more highly damped by fluid viscous effects, while the
frequency of oscillation is reduced indicating a reduction in the stiffness of the system due to negative fluid
added stiffness.4 For a uniform annular geometry and rocking motion of the outer cylinder, the unsteady
pressure and velocities generated in the annulus result in limit-cycle oscillation (flutter motion) of the outer
cylinder.

To examine the effect of larger amplitude oscillations on the stability of the system, the TDCT was used to
transform the N–S and continuity equations in the moving physical domain into a fixed computational
domain, thereby eliminating the limitations inherent in the MP analysis. To obtain the results based on linear
flow theory used by Mateescu et al. [24–26] in which the natural frequency was onp1, and to compare their
results with the results based on the nonlinear flow as shown in the present work by using TDCT analysis, the
values of on were assumed to be less than or equal to unity throughout the present analysis. Under this
assumption, the results obtained using TDCT analysis indicate that the system with uniform annular geometry
is more stable than predicted by MP analysis. Also, TDCT predicts less damping and higher coupled
frequency of oscillation for the system. For an annular geometry with a backward step, the TDCT approach
predicts much less damping than the MP analysis and a lower frequency of oscillation for the coupled system
than the system without a step.

There are several features in the physics of the problems solved in the present work which are as follows:
(i)
4For

the flu
Such systems are susceptible to fluid-elastic instabilities and vibration problems, especially when the flow
passage is narrow.
(ii)
 For the case of a rigid cylindrical body hinged at one point and coaxially positioned in a flow-carrying
duct, oscillatory instability can occur at sufficiently high flow velocities, via a negative damping
mechanism. The damping of the cylindrical structures due to annular flow arises from the inlet and outlet
effects and from frictional effects in the annulus, both effects increasing with flow velocity.
(iii)
 The damping forces and pressure distribution along the annulus can be well predicted if simple
assumptions about the unsteady flow in the annulus are made.
(iv)
 The present work is similar to the model presented by Parkin and Watson [16] for 61 and 301 annular
diffusers and it is also similar to the model presented by Spurr and Hobson [12] in which the unsteady
forces caused by the unsteady flow down an annulus are particularly sensitive to the amount of pressure
recovery which takes place when the annulus is terminated by an annular diffuser (in the present work,
by a backward step or diffuser). The pressure recovery leads to forces on the centre-body (in this work on
an annular geometry of given dimensions, as well as for a given mass, M, of the oscillating cylinder, only the combined (spring plus

id added) stiffness K is changed so as to correspondingly modify the coupled on.
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the outer cylinder) which are in phase with its velocity and therefore likely to lead to coupled
fluid–structure self-excited vibrations.
(v)
 There are flow-induced damping (velocity-dependent) and stiffness (displacement-dependent) forces
acting on the oscillatory and non-oscillatory walls.
(vi)
 The instability can be initiated by increasing the forced vibration amplitude, but viscous effects stabilize
the system, and they become more important as the annulus becomes narrower as shown in Refs. [21,22].
(vii)
 By decreasing the spring constant K, i.e., reducing on, while keeping the same Re, the motion is more
highly damped by fluid viscous effects.
(viii)
 For uniform geometry the divergence instability is obtained with 0.001ponp0.01, depending on the
meshes used. For the fine mesh, the system becomes overdamped and stable when on ¼ 0.01 (these
results have not been presented in the present work but indicate some features of the problems solved).
(ix)
 With a gap-width of either h or 2h there is less damping when Re ¼ 400 than when Re ¼ 200. However,
for the same Reynolds numbers, when the gap-width is 2h the coupled frequency of oscillation is higher.
(x)
 The uniform annulus results demonstrate the generation of a negative fluid-stiffness force for the lateral
motions in the annulus. If the restoring (positive) spring stiffness is sufficiently small, then, for a given
flow velocity, the overall stiffness may vanish, giving rise to static (divergence) instability. For the
narrower annulus, the natural frequency is smaller, which means that the system is less prone to
divergence (cf. Ref. [24])—at the threshold of which the sum of the mechanical and flow-induced stiffness
is zero.
(xi)
 For non-uniform annular passages (e.g., annular passage with a backstep), when Re ¼ 200, on ¼ 0.1, the
present theory predicts a significant amount of flow-induced damping. When on is one order of
magnitude smaller, however, this theory predicts divergence.
(xii)
 Also, when the gap width is h and Re ¼ 200 with on ¼ 0.01, the system is stable, but it is unstable (by
divergence) for wider uniform and stepped geometries.
(xiii)
 For a fixed Re, going from the uniform to the stepped geometry has a destabilizing effect on the system.
This can be interpreted (a) as a larger negative stiffness being generated for a given flow velocity, or (b)
the necessary flow velocity, U, for generating a given negative stiffness being smaller.
The final point is that, the purpose of the present calculations was, principally, to demonstrate its feasibility,
and also to show some of the effects of the main system parameters on system stability, thereby gaining some
physical insight into a simple but generic physical system. In this regard, it should be recalled that, throughout,
the theory is for laminar flow and the motions considered are purely lateral or rocking. Hence, the temptation
to relate the results to cases of flow-induced instabilities in practical systems [1] should be approached with
caution.
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